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A UNIFIED APPROACH TO ESTIMATION IN LINEAR MODELS

WITH FIXED AND MIXED EFFECTS

By
C. Radhakrishna Rao

Center for Multivariate Analysis
University of Pittsburgh
Pittsburgh, PA 15260

Abstract

\j>A unified approach is developed for the estimation of unknown fixed
parameters and prediction of random effects in a mixed Gauss-Markoff
linear model. It is shown that both the estimators and their mean square
errors can be expressed in terms of the elements of a g-inverse of a
partitioned matrix which can be set up in terms of the matrices used in
expressing the model. No assumptions are made on the ranks of the matrices
involved. The method is parallel to the one developed by the author in the
case of the fixed effects Gauss-Markoff model using a g-inverse of a
partitioned matrix, (Rao 1971, 1972, 1973, 1985).

-~ A new concept of generalized normal equations is introduced for the
simultaneous estimation of fixed parameters, random effects and random
error. All the results are deduced from a general lemma on an optimization
problem. This paper is self containcsd as all the algebraic results used are
stated and proved. The unified theory developed in an earlier paper (Rao,
1988) is somewhat simplified. -

\
Key words and phrases: g-inverse, Gauss-Markoff model with fixcd and
mixed eftects, IPM (inverse partitioned matrix) method, normal equations.

AMS classification index: 62J05
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1. INTRODUCTION

The Gauss-Markoff model with fixed and random effects, called the
mixed linear model, 1is written in the form

Y=XB+UE+ & (1.1)

where Y is an n-vector of observations, X is a given nXm matrix, f is an m-
vector of unknown fixed parameters, U is a given nxp matrix, & is a p-
vector of hypothetical random variables. We make the following

assumptions on the first and second order moments of £ and €.
E(¥)=Ay, E(&)=0, D) =T, D(E)=G, Cov( €)=0. (1.2)

We refer to the model (1.1) - (1.2) as the GM(M) model where M within
brackets refers to mixed effects. The corresponding model with fixed effects
only, i.e., without the term U¥, will be referred to as GM(F) when a
distinction has to be made or simply as the GM model as it is usually known.

o

N A

N

Fid

We develop a simple and a unified appproach in the general case, when
nothing is assumed about the ranks of the matrices involved, for the
estimation of the fixed parameter B and the prediction (or estimation) of the
hypothetical variables & and &, when the other parameters Yy, ' and G are
partly known or completely known. First we prove a few algebraic lemmas.

v
e
N
NG

The following notations are used.

T - % -
DPIRELL

R™: n dimensional Euclidean real vector space.

R(Z): vector space spanned by the column vectors of the matrix Z.
o(Z): rank of the matrix Z. )
YA a matrix of maximum rank such that Z'Z+ = 0. r
YA a g-inverse of Z, i.e., a matrix satisfying the equation Z Z° Z = Z.
tr Z: sum of the diagonal elements of Z when it is a square matrix.

(A:B): the matrix obtained by adjoining the columns of the matrix B to-.
ihose of A. - -

Hy o
L»Pistribution/

= ¢ Avatlatility (Ccdss
cric = ) e
_ ; Avall uand/or
cor ; |«
CNSNCL ‘Dist Siscial
p! |

A A AR LT

L

M

We need the following results on g-inverses.
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Lemma 1. Let Z~ be a g-inverse as defined above. Then:

(i) a=7Z"b is a solution of the consistent equation Za = b. (1.3)
ui) p(Z°Z2) = o(Z) = w(L°Z). (1.4)
Proof. Since Z a = b is consistent, b € R(Z), i.e., b = Zc for some c.

Then ZZ b = ZZ"Zc = Zc = b which shows that Z°b is a solution.
Now ZZ°ZZ =17", ie., ZZ  is idempotent so that (1.4) follows.

Lemma 2. Let G be an n.n.d. (non-negative definite) matrix of order nxn,
X be an nxm matrix and

G X y C C,
[ ] = (1.5)
X 0 :

be any choice of g-inverse. Then:

(i) XCIG=XC;G =0, XC,X=X=XC3X. (1.6)
(i) GC;GC1G=GC; G C{G=GC1GC1G=GC;G=GC1G (1.7)
(iii) X C; X=X C; X = 0. (1.8)
(iv) r G C1 = p(G:X) - p(X). (1.9)

Proof First we show that the equation

Ga+Xb = GA
X' a = Xu (1.10)

is consistent for any vectors A and Q. Let (a: B) be a row vector such that

G X

(a':B) =0=>aG+pX =0, aX=0

X 0




A 3> adGa+BXa=zo=aGa -0= aG =o.

The last step follows since G is an n.n.d. matrix. Then,

R G G G X'
SR ER PN ERS LS
Yo X' W X' u X 0

E'j which establishes the consistency of (1.10). In such a case, using the g-
inverse (1.5), we find a solution of (1.10).

4=C1GA+C2X'l, bH=C3GA-CsX'l.

it Substituting 4 for a in the second equation of (1.10) and equating the
- terms involving A and {L on both sides we obtain

XCiG=0, XCX =X. (1.11)

Further, the transpose of the g-inverse in (1.5) is also a g-inverse in view of
the symmetry of the left hand side matrix of (1.5), and results analogous to
(1.11) hold giving

¥ XC{G=0, X C,X =X\ (1.12)

which prove (1.6). Again, substituting 4 and b fora and b in the first
- equation of (1.5) and equating the terms in A on both sides, we have

3 G C G+XCG=G. (1.13)

Multiplying (1.13) by G C1 and G C; and using (1.11) and (1.12), we get

< the equalities in (1.7).

It is easy to see that

et

A

PLrAIIL

Ga+Xb=Xpu
X'a =0 (1.14)
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hN is a consistent equation for any W, so that 4=C; X K is a solution.
= Substituting 4 for a in the second equation of (1.14), we find that X' C; X u
il =0 VU =XC X=0=X'C; X, which proves (1.8).
53 1
el
.'1: Now
N P =
- X" 0 c, -C, X'C, X'C,
o =t(GC{+XC3y) + tr X'C,
| Y =tr GC{+p(XC3) + P(X'CH)
s =tr GC; + p(X) + p(X)) (1.15)
since XC, and X'C, are idempotent. But
G X c, G, G X
- o | =p ' = p(G:X) + p(X). (1.16)
X 0 c; -C4 X 0

Equating (1.15) and (1.16), we have (1.9) and Lemma 2 is proved. Now we
prove the main lemma.

S

7 i '
;:: Lemma 3 LetG and X be as in Lemma 2, g € R(G : X) and p € R(X).
[ Then

2;'

mn (@aGa+2ag)=a,Ga,+2a_ g

. where a, is any solution to

o

- Ga+Xb=-g

’ X 'a =p. (1.18)
) With Cl, C2, C3, C, as defined in Lemma 2, one choice of the solution for
%

I

b
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i (a,b) of (1.18) is
3
o~ ax=-C,g+C,p, b, =-C5g-C,p (1.19)
y i
\'-'
5 giving the expressions for the minimum in (1.17) as
»
¥ g ax -pbx=-gC,;g+g(Cy,+Cyp +pCyp. (1.20)
) Proof Let ax, bx be any solution of (1.18), and Z =X +. Then
multiplying the first equation of (1.18), with (a, b) replaced by (ax, bs), by
Y Z' and a, we obtain
:: ZGau+Z'g = o0 (1.21)
)
iR &
\ a,Ga + a,g = -b_p (1.22)
N
N Ll . . . “ .
: A general solution of X a =pisa, +Z d where d is arbitrary. Then writing
& a=a, +7d,
._« aGa+2ag =a;G a, +2 a;g+d'Z'G Zd+2d(ZGa, _+Zyg)
- = a;Ga*+2a;g+d'Z'GZd, using (1.21)
- za,Ga,+2a,g=a,g-b_p, using (1.22)
S which proves(1.17). The result (1.20) is obtained by substituting the
- expressions (1.19) in (1.22).
‘" Lemma 3 plays a crucial role in estimation and prediction problems in
b linear models. The results are given in Section 2.
E: Lemma 4. If Y is an n-vector random variable with E(Y) =0 and D(Y) =
7 02 G, then an unbiased estimator of 02 is
;:




aa i S SRt

N YG
Y
LY 2 - —
t: o} >G) (1.23)

where G~ is any inverse of G.

Proof

PO

-
[

E(YGY)=EuwG YY) = c2tt GG = 02p(G), using (1.4).

2. FIXED EFFECTS LINEAR MODEL

. “l ,l’l.“' “L".

The Gauss-Markoff linear model with fixed effects is

2V

PRy

Y=XB+6& E(6) =0  D)=02G (2.1)

-

and the associated problems are those of estimating the unknown
parameters B and 02 and the random error & We use the results of Lemma
3 in solving these problems. We denote

SERSSS

2

) A

G X C1 C2
X' 0 Cs -Cy

for any choice of the g-inverse.

Y AN
T LU

.

A5

“ :'

2.1 BLUE of p'B

i Yote !

T
5

Consider a linear function a 'Y as an unbiased estimator of p . Then

E(@Y)=aXB=pBV P =>Xa=p. (2.3)

RO

We find a by minimizing

4.4
t

L% %

V(a'Y) = 02 a’ G a subject to xa =p. (2.4)

." ?l

I
t

Applying Lemma 3 with g = o, the BLUE of p' is

> :.) !\J\
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a,Y=pC,Y (2.5)

with the minimum variance
c2a * Ga ,=-02b ,'.:p =02p'C,p (2.6)
using (1.20) and the expressions for a, and b, in (1.19).

2.2 Estimation (Prediction) of &

Consider a linear function q'& of € and let a'Y, with E@Y)=0= a'X =
0o, be its predictor. Then the mean square error of prediction is

E(q'E -a'Y)?= E(q'E - a'§)2
= 02(a'G a-2aGq +q'Gq). (2.7)

Applying (1.19) with g =-Gq and p =0, the minimum of (2.7) is attained
when the predictor is

a,Y=+«C,gY=qGC Y =q &. (2.8)
The minimum mean square error of prediction is, wusing (1.19) and (1.20),

o2a 4g - b ,p +q'Gq)

= 02(-q'GC ;Gq + q'Gq) = 02¢'(G - GC ;G )q. (2.9)

The results (2.8) and (2.9) which hold for any q imply that the minimum
dispersion error predictor of & is

£€=GC Y =GC Y (2.10)
with
D€ -8)=02G -GC{G) (2.11)

e B e e T e A e T e T T R AT AT A S A A NN AN N AT
s , e il 4 X 1) A
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2.3 Estimation of 02

PP e

Now

E (&) =E(GCY)=GC1XB =0, by (16)

EEASEES

D ( ) =D(GC1Y) = 02GC1GC ;G

= 52GC1G, by (1.7).

Then using Lemma 4, an unbiased estimator of o2 is

8'GC1G6) &=YC1G(GCI1G)GC1Y (2.12)

120 e FLE

with a suitable divisor. Note that YER(G:X), sothat Y =G A +3 for a
suitable X\ and L. Then

Ve

Y'C1G(GCiG) GC1Y = N(GC1GXGC1G) (GC1G)HA. (2.13)

b
[ty

Since the terms in X vanish, using (1.6). Hence, by the definition of
g-inverse, (2.13) reduces to

»
-
.
‘.
™ .
-

AGCIGA = (X + NG) C1(XH + GN), using (1.6)
=YCY.

E(Y'C1Y) = tr E(YY'C1) = 62 t(G + XBBX)C
=021 GC; + 02t BRXCX =tr GC1, using (1.8)
=02tr GC1 = 02[p(G:X) - p(X)], using (1.9).

Then an unbiased estimator of 02 i

4 ___YC1Y
— p(G:X)-p(X)
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b 2.4 Normal equztions

L -

4_ The expressions for the estimates of p'B, 02 and € obtained in sections
Y 2.1 - 23 suggest a more direct way of obtaining them by first solving the
' consistent set of equations

!

) Ga +XB =Y

ke X'a = 0. (2.16)
}

, If ( &, é\) is a solution of (2.6), then we have the following:

o

: (i) The BLUE of an estimable function p'B is p’ @

N (ii) The minimum dispersion error predictor of & is £-G a .

v (iii) An unbiased estimator of 02is 52 =Y' &/[p(G:X) - p(X)].

¥

2: We may call (2.16) as the generalized normal equations for the simultaneous
i estimation of & and B.

. If & and ﬁ are obtained through a g-inverse as defined in (2.2),
- then we automatically have the expressions for the precisions of the
v estimates:

W

2 V(p' B) = 02p'Cap

- D & - €)= 0%G - GC;G).

= When G-1 exists, we can write the equations (2.16) in terms of the

) unknowns & and B to be estimated in the form

v,

Jl

/. € + XBp=Y

a X'Glg =0 (2.17)
- using  the relationship & = G a. Thus, the equations (2.17) are the
X appropriate normal equations for & and 8 when G-! exists. In such a case,
Y

. '
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eliminating & in the second equation using the first equation in (2.17), we

have
X6 lxp=xGly (2.18)

which is the usual normal equation for B only. If @ is a solution of (2.18)
then from (2.17), £ -Y-X [3 the usual residual.

The equation (2.16), however, is a more natural one which is simple to
set up without any initial computations and which does not involve any
assumptions on the ranks of the matrices involved.

2.5 Projection operator
The second normal equation of (2.16) implies that & =Z 8§ where Z = X+
and 8 is arbitrary. Substituting for & in the first normal equation of (2.16),

X+ GZ8 =Y (2.19)

which provides the decomposition of the observed Y as 'signal + noise’ giving
estimates of XB and &. Note that R(GZ) and R(X) are disjoint and Y €ER(G:X) =
R(GZ:X) w.p.1. Hence the decomposition (2.19) is unique. If ﬁ and 8 is a
solution of (2.19), then an estimate of p'B is p' ﬁ and of §is & = GZ 8.

Since R(X) and R(GZ) are disjoint, although R(GZ:X) may not span the
whole of R",  there exist projection operators Py and Pz onto R(X) and
R(GZ) in terms of which Y can be decomposed as in (2.19). Then

Xf=PYad &= GZE=PggY =(-PpY.

Rao (1979) gives a detailed discussion of generalized projection operators.

3. MIXED EFFECTS LINEAR MODEL

The mixed effects linear model is of the form

il P




N 11

Y=XB+UE+ & (3.1)

with
E(8)=0, E(§)=AYy

D(€)=G, Cov(§, ¢&)=o, D& =T

We write the model in an alternative form

-

.,\:- Y=X_, +Un+6 (3.2)
e where

ul

i X,=X:UA), B,=(B:y), m=E&-Ay.

4

"v',,'

5

“ 3.1 Estimation of a mixed effect

E Let p'B, +q' M be a mixed effect to be estimated. If ¢ +a’Y is an
J unbiased estimator, then

5 E(c+a'Y-p'B,-gn)=0=c=0and X ;a =p.

~ The mean square error is

& Ela(Un+8) - ¢'n?

.::

o =a'G,a-2aUl'q+qTq

where G, =UTU +G. Applying Lemma 3, the optimum a is a solution of

the equation
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G,a+X,b =Ulq
X;a =p.

for any choice of the g-inverse, then the best linear estimator is a xY

where
a, =C1UTq +C2p (3.5)

and the mean square error is, using (1.19) and (1.20),

-a 4UTlq -b;p+q'I"q
=q(I -TU'C {UT)q+p'Cyp -p'(C 5 +C 3)UTq.

Writing p' = (p 1P o)

PB,+aM=p B+ P,Y+qn=pB+(®,qA)Y +aE (3.7

we find that the formulas (3.5) and (3.6) cover all special cases of linear
functions involving one or more of the parameters § and Yy and the random
variable £.

3.2 Estimation of the random error

&;;" P -’;’;" .:’;v

-

Let r'€ be a linear function of the random error estimated by a'Y. The
condition of unbiasedness implies that a X, = o. The mean square error is
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E@'Y-ré)? =aG,a-2aGr +rGr. (3.8)

Applying Lemma 3, the minimum of (3.8) is attained when the estimator of
ré&isa Y where a, =C1Gr. The minimum mean square error is using

(1.19),

r'(G-GC 'IG )r. (3.9)

From the above expressions it follows that the minimum dispersion error
estimate of & is

£ =GC;Y with D( £ -8) =G - GC;G. (3.10)

3.3 Normal equations

The expressions for the estimators obtained in Sections 3.1 and 3.2
suggest the following estimation procedure. We set up the generalized
normal equations

G, X UA Q Y
X! 0 0 B = 0 (3.11)
A'U' 0 0 Y 0

. . A A . . A v A
and obtain a solutuion Q, ﬁ and Y. Then the estimate of Nis N =TU «
1

and of £is £ =G 4&. ’I;he estimate of p 1'6 +p ;,:y when estimable is p
A

B +p, ¥.

Denoting (X:UA)=X_ and B; = (B, ¥), the equations (3.10) can be

written as
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b

:‘. (G+UIU)a +X B, =Y

A '

g X, =o. (3.12)
;::-:' - [

i 1f G'! and T'! exist, then multiplying the first equation by X _ Gl and
r'lru'G-1 and using the second equation, we obtain the two equations

-N: T _1 t -1 _ ' _1

N X G'Un+X G 'XB, =X_,G'Y

o

o

:'\: ' ' _1 B _1

r-l+uc-luyn+uc-ixs, —uGly. (3.13)

5

Y Henderson (1984) derived equations of the type (3.13) when A = o. (See also
-,Q Harville, 1976). The equations (3.12) provide estimators of T and B directly.
b When G and T' are not both non-singular or when G and/or T is a
‘-E: complicated matrix, other methods of solving the equations (3.11) could be
s explored.
o The estimators of £, €, P and Yy obtained in Sections 3.1-3.3 involve
the matrices G and ' which may not be known. In the simplest possible case
- G and T may be of the form ¢ %Vl and © %VZ respectively, where V; and
.

E: V, are known and o% and O % are unknown variance components. In such
b a case, O% and O’% may have to be estimated using techniques such as
W the MINQE or maximum likelihood as described in Rao and Kleffe (1988).
:j The estimates of o% and O’% may be substituted for the unknown values
., . . .

:‘\ in the expressions for the estimators of §, €, fand ¥.
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